weld neck flange soloFor strong acids and severe corrosion

Commercially pure zirconium weld neck flanges, also known as zirconium 702, are most well-known for their superior corrosion resistance in some of the harshest environments that include:

o  Hydrochloric Acid o  Sulfuric Acid o  Formic Acid o  Nitric Acid  o  Acetic Acid  

It is also a metal that offers industry unique properties. It does not absorb neutrons, making it ideal for use in nuclear power and at low temperatures it is superconductive, making it ideal for super magnets.

Hydrochloric Acid Resistance
What makes Zirconium weld neck flanges particularly useful to industry is their resistance to hydrochloric acid where they exhibit a corrosion rate of less than 5mpy at all concentrations and temperatures in excess of the boiling point. Even in 37% HCI, Zirconium fasteners do not begin to show substantial corrosion until 130°C (266°F). This performance is unmatched by any other engineering metal or alloy with the exception of tantalum. To give you a point of reference, Hastelloy C276 will experience 288 mpy (mils per year) of corrosion in just 10% HCl at the boiling point while Zirconium weld neck flanges will have a nil corrosion rate even when aerated. As a result, Zirconium fasteners are most beneficial when used is in hydrochloric acid processes with temperatures above the boiling point and in the absence of oxidizing impurities.

General Acid Resistance
In addition to its impressive performance in hydrochloric acid, in sulfuric acid, Zirconium weld neck flanges are resistant to temperatures well above boiling and at acid concentrations up to 70%. Only one other metal, tantalum, is equal to zirconium in nitric acid, where zirconium can be used in all concentrations up to 90% and temperatures up to 200°C. Zirconium is also resistant to most organic media and is considered one of the most corrosion resistant materiala in virtually all acetic acid solutions.

 Zirconium comparison chart

When Zirconium Does Not Perform
Zirconium is known for its tough resistance to acid corrosion, but there are instances that it is not recommended to use Zirconium. Though aeration does not affect the resistance of Zirconium weld neck flanges, even small amounts of oxidizing media such as ferric or cupric chlorides will greatly decrease its corrosion resistance. This often occurs from upstream equipment that carry corrosion contaminants into the zirconium equipment, making process control of upstream equipment critical in maintaining the corrosion resistance of Zirconium. In addition, acid in the presence of oxidizing halide contaminants and can accelerate the rate of attack on Zirconium fasteners even at low concentrations. Use of Zirconium weld neck flanges in the presence of fluoride ions is also not recommended, even at low concentrations.

Applications
o  Nuclear industry utilize Zirconium weld neck flanges for its inability to absorb neutrons
o  Zirconium has been used for decades in over 20 years in dye manufacturing for its incredible corrosion resistance and inertness.
o  Chemical processing plants often utilized Zirconium in the production of polymers that utilize strong acids .
o  Commonly used with nitric acid for the production ammonium nitrate for fertilizers.

Resources: Zirconium Torque SpecsFlange DimensionsFlange Bolting Chart

Flange Types Available: Blind FlangesLap Joint FlangesSlip On FlangesSocket Weld FlangesThreaded FlangesWeld Neck Flanges

 


Zirconium Grades, Chemistry and Specifications

Zirconium 702

99.2% commercially pure zirconium with the highest corrosion resistance.

Zirconium 702 Specifcations: UNS R60702, ASTM B493 and B550, ASME SB493 and SB550 Rod (Bar), ASTM SB551, ASME SB551  Plate, Sheet and Strip 

Zirconium 702 Chemistry

Zirconium 705 

95.5% zirconium with the addition of 2-3% niobium. This addition increases the impact strength of the alloy.

Zirconium 705 Specifications: UNS R06705, ASTM B493 and B550, ASME SB493 and SB550 Rod (Bar)

Zirconium 705 Chemistry

 


Mechanical Properties

 Zirconium 702 Tensile Curve Zirconium 705 Tensile Curve   

 

Zirconium Tensile Data


Zirconium Iso-Corrosion Curves

Specialty Metal H2SO4 Iso-Corrosion Curve

Specialty Metal HCl Iso-Corrosion Curve  


Zirconium Weld Neck Flange Features & BenefitsWeld Neck Flange2

Zirconium weld neck flanges are best for hazardous, high pressure applications. Weld neck flanges are easily identified by their long tapered neck. The inside of the flange is bored to match the inside diameter of the pipe in order to ensure there is no restriction in flow and also to prevent turbulence at the joint. The tapered neck provides thicker metal at the flange joint, while the neck narrows down gradually to meet the pipe where it is butt welded to the pipe. This design helps to transfer stress from the flange to the pipe, as well as diminish stress concentration at the base of the flange connection.

Zirconium weld neck flanges are ideal for critical applications involving high pressure, sub-zero and elevated temperatures, as well as in conditions where fluctuations cause pipe expansion/contraction.

Key Feature: Ideal for high presure applications.

Weld Neck Flange Advantages

  • Ability to withstand high pressure – since pipe is welded to the neck of the flange, stress is transferred to the pipe.
  • The beveled end that, when connected to a pipe, creates a trough for a strong weld.
  • Most versatile flange in the ASME stable of flanges.

Weld Neck Flange Disadvantages

  • More advanced welding skill is needed for installation. The inside weld must be smooth to reduce friction and the outside weld must meet code criteria.

Uses

  • Severe conditions that include high-pressure, high-cyclic and hazardous fluid applications.
  • Fitting-to-fitting fabrication where the flange is welded directly to a fitting, such as an elbow, without the need for a short piece of pipe, as would be required with a slip-on flange.

Request a Quote / Order

Call: +86-755-29971616 or Submit a Request

Not sure what material is best for your application?

Contact an Expert

Use Our Material Selector

Questions?

Our material experts are ready to help guide you through your specific application.

Contact an Expert